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Abstract
Predicting protein-DNA binding sites is a challenging com-
putational problem that has led to the development of ad-
vanced algorithms and techniques in the field of bioinformat-
ics. Identifying the specific residues where proteins bind to
DNA is of paramount importance, as it enables the model-
ing of their interactions and facilitates downstream studies.
Nevertheless, the development of accurate and efficient com-
putational methods for this task remains a persistent chal-
lenge. Accurate prediction of protein-DNA binding sites has
far-reaching implications for understanding molecular mech-
anisms, disease processes, drug discovery, and synthetic bi-
ology applications. It helps bridge the gap between genomics
and functional biology, enabling researchers to uncover the
intricacies of cellular processes and advance our knowledge
of the biological world. The method used to predict DNA
binding residues in this study is a potent combination of
conventional bioinformatics tools, protein language models,
and cutting-edge machine learning and deep learning classi-
fiers. On a dataset of protein-DNA binding sites, our model
is meticulously trained, and it is then rigorously examined
using several experiments. As indicated by higher predictive
behavior with AUC values on two benchmark datasets, the
results show superior performance when compared to exist-
ing models. The suggested model has a strong capacity for
generalization and shows specificity for DNA-binding sites.
We further demonstrated the adaptability of our model as a
universal framework for binding site prediction by training it
on a variety of protein-ligand binding site datasets. In con-
clusion, our innovative approach for predicting protein-DNA
binding residues holds great promise in advancing our under-
standing of molecular interactions, thus paving the way for
several groundbreaking applications in the field of molecu-
lar biology and genetics. Our approach demonstrated efficacy
and versatility underscore its potential for driving transforma-
tive discoveries in biomolecular research.

1 Introduction
Protein-DNA binding site prediction is an essential area of
research with significant implications in various fields, in-
cluding molecular biology, genetics, drug discovery, and
synthetic biology. Accurate prediction of protein-DNA bind-
ing sites has far-reaching potential, leading to groundbreak-
ing biotechnology and drug design applications (Śledź and

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Caflisch 2018) along with several other applications includ-
ing understanding gene regulation (Ptashne 1986), func-
tional annotation of genomes (Pique-Regi et al. 2011), can-
cer research for designing targeted therapies (Xu et al. 2016;
O’Connor 2015), evolutionary studies (Lichtarge, Bourne,
and Cohen 1996), genetic engineering, and accelerating drug
discovery (Zhao, Cao, and Zhang 2020). Protein-DNA in-
teractions are fundamental to many biological processes,
such as DNA replication (Echols 1986), transcription (Dey
et al. 2012), repair, and recombination (Polo and Jackson
2011; West 2003). Accurate prediction of binding sites aids
in deciphering the molecular mechanisms behind these pro-
cesses, shedding light on the intricate workings of the cell.
It plays a crucial role in regulating gene expression by bind-
ing to specific sites on DNA. Predicting these binding sites
helps researchers understand how genes are turned on or
off, which is essential for understanding normal develop-
ment, disease processes, and various cellular responses. It
also can help identify potential drug targets for diseases like
cancer and genetic disorders. Some research applies protein-
DNA binding site prediction to specific diseases, such as
cancer (Zhu, Wang, and Qian 2016). By identifying altered
binding sites in disease-related genes, researchers aim to
uncover novel therapeutic targets. Designing drugs that in-
terfere with these interactions could offer new therapeutic
strategies. With the advent of high-throughput sequencing
technologies, vast amounts of genomic data are generated.
Predicting protein-DNA binding sites aids in interpreting
this data by identifying regions that are likely to be function-
ally important. Protein-DNA binding sites in genomic anal-
yses provide a foundational understanding of the functional
elements within a genome and their roles in various biologi-
cal processes. It bridges the gap between genomic sequences
and biological functions, enabling researchers to unravel the
complexities of gene regulation and molecular interactions.

Many recent studies leverage machine learning and
deep learning techniques to predict protein-DNA binding
sites (Zhang, Zhu, and shuang Huang 2019). These meth-
ods often involve training models on large datasets of known
binding sites and using them to predict binding locations in
genomic sequences. Researchers focus on identifying rele-
vant features or descriptors that can capture the characteris-
tics of protein-DNA interactions (Jones et al. 2001). These
features might include sequence motifs, physicochemical
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properties, and structural information of DNA and protein
molecules (Ivanciuc et al. 2004; Zhang and Liu 2019). Some
studies integrate various types of omics data, such as ge-
nomics, transcriptomics, and proteomics, to improve the ac-
curacy of binding site predictions. This integration allows
for a more comprehensive understanding of the regulatory
landscape. Evolutionarily conserved regions are often in-
dicative of functional importance (Tatarinova et al. 2016).
Research explores the use of conservation scores and com-
parative genomics approaches to enhance the accuracy of
binding site predictions. Incorporating 3D structural infor-
mation of protein-DNA complexes helps refine binding site
predictions by considering the physical interactions between
the molecules. This includes techniques such as molecu-
lar docking and structural modeling. Deep learning models,
such as convolutional neural networks (CNNs) and recur-
rent neural networks (RNNs), are applied to sequence data to
capture complex patterns in DNA and protein sequences, im-
proving binding site prediction accuracy. Transfer learning
techniques involve pretraining models on related tasks and
fine-tuning them for binding site prediction (Han, Pang, and
Wu 2021). This approach benefits from the knowledge ac-
quired in the pretraining phase. Evaluating the performance
of prediction methods is crucial. Researchers design bench-
mark datasets, establish evaluation metrics (such as sensitiv-
ity, specificity, and AUC), and compare different algorithms
to assess their effectiveness.

The information needed to understand protein structures
is all contained in the protein sequence. However, extracting
the structure from the sequence only is a difficult and time-
consuming task. Consequently, structure-only-based mod-
els consistently outperform sequence-based models in terms
of performance due to the availing of complete structures,
which is not easy to infer from sequences only. Structure-
based models, however, need precise protein structures as
input to assure model performance. As a result, predicting
DNA-binding sites from protein sequences is still a signif-
icant and urgent research issue. Because feature extraction
frequently relies on manual design and does not produce
a refined initial representation, the performance of current
sequence-based models is still insufficient for practical ap-
plication. Therefore, it is imperative to create an end-to-end
model without the use of handcrafted features. The represen-
tation learning methods pre-training and contrastive learning
are both frequently employed. The model is trained unsu-
pervised during pre-training using information from a huge
amount of unlabeled data, and the model parameters are
then transferred to later tasks for feature extraction or fine-
tuning. In contrastive learning, samples from the same class
are found to be close to one another, while examples from
other classes are found to be distant from one another.

In this work, we identify several limitations to the work
done in (Liu and Tian 2023) and propose alternate solutions
to overcome the limitations. More specifically, our contribu-
tions are the following:
1. It is a well-established fact in the literature that the neural

network-based methods do not work efficiently as com-
pared to simple Machine Learning (ML) classifiers (e.g.
tree-based methods) in the case of tabular data (Grinsz-

tajn, Oyallon, and Varoquaux 2022; Joseph and Raj 2022;
Malinin, Prokhorenkova, and Ustimenko 2021). There-
fore, instead of using 1DCNN for the underlying classifi-
cation (and including all discussion around that) as done
in (Liu and Tian 2023), we use simple ML classifiers for
the underlying supervised analysis.

2. Authors in (Liu and Tian 2023) use ProtBert (Elnaggar
et al. 2021) as the pre-trained model to generate the em-
beddings for each amino acid within protein sequences.
We replace that with a more efficient SeqVec (Heinzinger
et al. 2019) pre-trained model. The choice of replacing
ProtBert with SeqVec is due to its demonstrated effec-
tiveness in learning relevant features for our task (i.e.
Binding site prediction).

3. Furthermore, we propose a lightweight model using the
idea of Sparse Coding, which combines the power of
k-mers and one-hot encoding to design efficient initial
embeddings for the amino acids. The only parameter in
this sparse coding-based embedding method is k (con-
textual window size for amino acids), which is signif-
icantly lesser compared to complex models like Prot-
Bert and SeqVec. This Almost Parameter Free approach
makes Sparse coding an ideal choice for fast binding site
prediction.

In the remaining paper, we discuss the literature review
in Section 2 while the paper’s main contributions are high-
lighted in Section 3. The experiments and dataset detail are
given in Section 4 followed by the discussion of the results
for proposed and baseline models in Section 5. In the end,
we discuss the conclusion of the paper in Section 6.

2 Related Work
The prediction of protein-DNA binding sites is a critical task
in computational biology, with applications ranging from
understanding gene regulation to designing novel therapeu-
tic agents (Collie and Parkinson 2011). Over the years, var-
ious computational methods have been developed to tackle
this complex problem, each leveraging different techniques
and approaches. In this section, we review the key literature
in the field of protein-DNA binding site prediction, focusing
on different methodologies, challenges, and advancements.

Evolutionary information has been a cornerstone of
protein-DNA binding site prediction (Kuznetsov et al. 2006;
Si, Zhao, and Wu 2015). Methods utilizing multiple se-
quence alignments (MSAs) (Ahmad and Sarai 2005; Yan
et al. 2006) and phylogenetic profiles (La and Kihara
2012) have shown promising results. Techniques like DR-
NAPred (Yan and Kurgan 2017) and DNAPred (Zhu et al.
2019) incorporate evolutionary conservation patterns to
identify potential binding sites. SVMnuc (Su et al. 2019)
and NCBRPred (Zhang, Chen, and Liu 2021) also utilize
evolutionary information for distinguishing binding sites.

Traditional machine-learning techniques have been exten-
sively used in the context of binding site prediction. Methods
like SVMnuc (Su et al. 2019) and DBPred (Patiyal, Dhall,
and Raghava 2022) incorporate support vector machines
(SVMs) to classify binding sites based on a set of engineered
features derived from sequence and structure data. These

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2023. ; https://doi.org/10.1101/2023.08.23.554389doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.23.554389
http://creativecommons.org/licenses/by-nc/4.0/


methods have demonstrated reasonable predictive perfor-
mance and often rely on well-curated training datasets.

Recent advancements in deep learning have led to the de-
velopment of more complex models for protein-DNA bind-
ing site prediction (Zhang et al. 2022; Si, Zhao, and Wu
2015). ProtBert (Elnaggar et al. 2021), a pre-trained trans-
former model adapted from natural language processing, has
shown its potential to capture intricate sequence patterns.
The combination of ProtBert with 1D convolutional neural
networks (1DCNN) has been explored to enhance perfor-
mance in identifying binding sites. Transfer learning from
related domains, such as language models, has become a
prominent technique (Novakovsky et al. 2021; Aizenshtein-
Gazit and Orenstein 2022). Pre-trained models like Prot-
Bert and SeqVec (Heinzinger et al. 2019), inspired by NLP
models, have shown success in capturing high-level fea-
tures in protein sequences. These models provide a founda-
tion for building more specialized predictors with fewer la-
beled samples. SeqVec introduces embeddings that capture
the biophysical properties of protein sequences by training
on vast unlabeled protein data. These embeddings, derived
from a language model, have demonstrated their potential in
improving predictions. Sparse coding techniques, which do
not require labeled data, have also been explored to gener-
ate embeddings that preserve important context (Wu et al.
2021).

3 Proposed Approach
We propose a protein-ligand binding sites prediction frame-
work to perform the binding site prediction of a given
protein sequence. The overall architecture of the proposed
model comprised two main modules: the sequence embed-
ding module and the classification module.

3.1 Sequence Embedding Module
The sequence embedding module leverages two distinct
techniques, namely SeqVec and Sparse Coding, to create
fixed-length embeddings for individual amino acids within
a protein sequence.

SeqVec (Heinzinger et al. 2019) It is a pre-trained pro-
tein language model that captures intricate sequence patterns
and semantic information inherent to protein sequences. The
SeqVec language model is based on Embeddings from Lan-
guage Models (ELMo) (Sarzynska-Wawer et al. 2021), com-
monly applied in natural language processing to create con-
tinuous vector representations (embeddings) for protein se-
quences. These embeddings, named SeqVec (Sequence-to-
Vector), capture biophysical properties from unlabeled data
(UniRef50) and enable simple neural networks to excel in
various tasks.

The architecture of SeqVec contains the following steps:

1. ELMo Pre-training: ELMo, originally designed for nat-
ural language processing, is a bi-directional language
model that learns to predict the likelihood of the next
word in a sentence given the surrounding words. It does
so by training on massive amounts of unlabeled text data,

such as Wikipedia articles. ELMo develops contextu-
alized embeddings that capture the syntax and seman-
tics of the language. In the context of SeqVec, ELMo is
trained on large protein sequence databases, specifically
UniRef50, to predict the next amino acid in a sequence
based on its neighboring amino acids.

2. Embedding Extraction: After pre-training, ELMo pro-
duces embeddings for amino acids in a protein sequence.
These embeddings capture the contextual information
about each amino acid based on its surrounding amino
acids in the sequence.

3. Sequence Embeddings: The output of ELMo for each
amino acid is a continuous vector representation that cap-
tures the biophysical properties of the protein sequence.
These embeddings are referred to as SeqVec embeddings
and serve as the representation of the protein sequence.

4. Embeddings for Prediction Tasks: The SeqVec embed-
dings can be used as features for various protein predic-
tion tasks, such as secondary structure prediction, intrin-
sic disorder prediction, subcellular localization predic-
tion, and more. These embeddings are fed into neural
networks or other machine learning models to perform
these tasks.

The key innovation of SeqVec lies in its use of ELMo
to capture the biophysical properties of protein sequences.
ELMo’s ability to learn contextualized embeddings from
unlabeled protein sequences enables SeqVec to generate
embeddings that encode relevant information about protein
structure and function. This approach offers an alternative to
the traditional use of evolutionary information and provides
a scalable solution for analyzing protein sequences, partic-
ularly in scenarios involving large-scale proteomics data.
Note that we justify the preference for SeqVec over other
protein-based pre-trained language models, such as Prot-
Bert (Elnaggar et al. 2021) (as used in CLAPE (Liu and Tian
2023)) due to its demonstrated effectiveness in learning rel-
evant features for our task.

Sparse Coding Since fine tunning a language model could
still be expensive, and it may not generalize better in all
scenarios, we proposed a sparse coding-based alternative,
which involves the power of k-mers (for neighborhood con-
text capturing) and one-hot encoding (for generic embed-
ding generation) to transform amino acids into numerical
representations. The utilization of Sparse Coding is justifi-
able by its ability to capture local compositional information
within amino acids of the protein sequences, enhancing our
model’s capability to learn meaningful patterns associated
with binding sites. For this purpose, we take a k-mer (where
k = 9, which is decided using the standard validation set ap-
proach) as a sliding window for each amino acid. Then we
design a one-hot encoding-based representation for the k-
mer, which acts as the local embedding for the given amino
acid. In this way, we design embedding for each amino acid,
which is then used as input for supervised analysis using
machine learning and deep learning models.

One exception occurs in our sparse coding-based embed-
ding when the sliding window (k-mer) reaches the end of
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the sequence. In that case, for the remaining n − k amino
acids (where n is the protein sequence length), we take the
k-mers-based sliding window in reverse order and repeat the
one-hot encoding step, hence preserving the neighborhood
context.

3.2 Classification Module
After designing the embeddings for each amino acid within
the protein sequence for the purpose of binding site predic-
tion, the next step is to select efficient classification models
to perform the actual site prediction. For this purpose, the
features generated by the sequence embedding module (i.e.
SeqVec and Sparse Coding) are fed into the classification
module, which is composed of multiple machine-learning
classifiers. For the same binding site prediction problem,
authors in (Liu and Tian 2023) propose the use of a four
“one-dimensional convolutional neural network” (1DCNN)
model as the backbone network. The raw dimension of the
input is 1024, and the output dimensions of the four lay-
ers are 1024, 128, 64, and 2, respectively. Each layer has a
stride of 1 and is followed by a batch normalization layer
(except for the last one). The layers are also accompanied
by varying sizes of kernel filters and paddings. The ker-
nel sizes are 7, 5, 3, 5, and the paddings are 3, 2, 1, 2, re-
spectively. The 1DCNN is designed to capture neighboring
information within protein sequences and employs opera-
tions like max pooling for down-sampling. Padding is ap-
plied for different convolutional kernel sizes to maintain the
same sequence length for input and output features, ensur-
ing a unified token-level classification outcome. The acti-
vation function ReLU (rectified linear unit) introduces non-
linearity to the model, and techniques such as dropout and
batch normalization are utilized to enhance model robust-
ness and generalization. The classification head is an inte-
gral part of the model, employing a Softmax function. This
function scales the output values between 0 and 1, represent-
ing mutually exclusive prediction scores. These scores re-
flect the probability of a given residue being a DNA-binding
site. The classification head is then used to predict DNA-
binding sites within protein sequences.

While deep learning model, such as 1DCNN, exhibits re-
markable capacity in various tasks, the dataset size, task
complexity, and interpretability considerations have guided
our choice towards machine-learning classifiers (i.e. Naive
Bayes, Multi-Layer Perceptron, K-Nearest Neighbors, Ran-
dom Forest, Logistic Regression, and Decision Tree). These
classifiers collectively analyze the encoded features and
make predictions about the presence of ligand binding sites
in the protein sequence. Moreover, it is well known in the
literature that the neural network-based methods do not
perform optimally as compared to simple Machine Learn-
ing (ML) classifiers (e.g. tree-based methods) in the case
of tabular data (Grinsztajn, Oyallon, and Varoquaux 2022;
Joseph and Raj 2022; Malinin, Prokhorenkova, and Usti-
menko 2021). Therefore, we decided to use simple ML mod-
els for the downstream supervise analysis (i.e. binding site
prediction).

By integrating these modules, our proposed framework
strives to provide accurate predictions of protein-ligand

binding sites, leveraging the strengths of SeqVec and Sparse
Coding for feature representation and harnessing machine-
learning classifiers for classification tasks. This design ratio-
nale ensures a well-rounded approach to predicting binding
probabilities while considering the intricacies of the protein-
ligand interaction problem.

To demonstrate the power of simple ML models over
the deep learning models, we fine-tuned the existing Prot-
Bert (Elnaggar et al. 2021) model (as used in CLAPE (Liu
and Tian 2023)) to generate embeddings for the amino acids
and performed binding site predictions as well. The fine-
tuning hyper-parameters are ADAM optimizer, 25 batch
size, and 10 training epochs. A loss function is formed by
combining the focal loss (Lin et al. 2017) and triplet cen-
ter loss (TCL) (He et al. 2018) to handle the data imbalance
issue effectively, and it’s defined as,

Loss = Lfocal + λLtcl (1)
where λ is a hyperparameter with 0.1 value.

4 Experimental Setup
This section discusses the details of the datasets used for
conducting the experiments along with the employed eval-
uation metrics and baseline methods. All experiments are
conducted using a server having Intel(R) Xeon(R) CPU E7-
4850 v4 @ 2.40GHz with Ubuntu 64 bit OS (16.04.7 LTS
Xenial Xerus) having 3023 GB memory.

4.1 Dataset Statistics
We perform the binding site classification task using DNA-
based datasets i.e. Dataset 1 and Dataset 2 (Liu and Tian
2023). These datasets were preprocessed to improve the
model’s robustness and avoid data imbalance bias. In both
datasets, the binding sites were defined as residues with a
distance of < 0.5 (threshold value) +R, where R represents
the sum of the Van der Waals radius of the two nearest atoms
between the residue and the nucleic acid molecule. The de-
tails of each of the datasets are as follows,

Dataset 1 It comprises 646 protein sequences as the train-
ing set and 46 as the test set. This data was introduced
by (Patiyal, Dhall, and Raghava 2022) after extracting it
from (Qiu et al. 2020) and (Zhang, Ma, and Kurgan 2019).
The statistical detail of this data is given in Table 1.

Dataset 2 It has 573 protein sequences as a train set and
129 as a test. It was introduced in (Xia et al. 2021) af-
ter collecting from the BioLiP database (Yang, Roy, and
Zhang 2012). This dataset consisted of protein-DNA com-
plex structural data, and its statistical detail is given in Ta-
ble 1.

4.2 Evaluation Metrics
To evaluate the performance of the binding site predic-
tion task, we used various evaluation metrics. The metrics
are specificity, precision, recall, F1-score, ROC AUC, and
Matthews correlation coefficient (MCC). As this is a binary
classification problem, the formulas used to compute some
of the popular metrics are as follows,
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Binding Non-Binding

Dataset 1 Train 15636 298503

Test 965 9911

Dataset 2 Train 14479 145404

Test 2240 35275

Table 1: The number of binding and non-binding sites
present in the test and train sets of each DNA-based dataset
respectively (Liu and Tian 2023).

specificity =
TN

TN + FP
(2)

precision =
TP

TP + FP
(3)

recall =
TP

TP + FN
(4)

F1− score = 2 ∗ precision ∗ recall
precision+ recall

(5)

MCC =
TP ∗ TN − FN ∗ FP√

(TP + FP ) ∗ (TP + FN) ∗ (TN + FP ) ∗ (TN + FN)
(6)

where TN, TP, FN, and FP represent true negative, true
positive, false negative, and false positive, respectively.
Moreover, the ROC AUC from SKLearn is used by us to
get the values of ROC AUC. We have reported the aver-
age score for each of the metrics after 5 runs. In terms of
interpretability, the description of different evaluation met-
rics along with their corresponding interpretability detail, is
given in Table 2.

4.3 Baseline Models
We have compared the performance of our proposed meth-
ods with various baselines, and the baseline models are as
follows,

DRNAPred (Yan and Kurgan 2017) A sequence-based
method for predicting and differentiating between DNA-
and RNA-binding residues, called DRNApred, is proposed
in (Yan and Kurgan 2017). Protein-DNA and protein-RNA
interactions are fundamental in cellular functions, yet many
remain uncharacterized. Existing methods often misclas-
sify binding residues, and their runtime limitations hinder
large-scale applications. DRNApred addresses these chal-
lenges by using a new dataset of both DNA- and RNA-
binding proteins, employing regression to penalize cross-
predictions, and employing a unique two-layered archi-
tecture. The method outperforms state-of-the-art predictors
by significantly reducing cross-predictions, providing high-
quality false positives near-native binding residues, and im-
proving accuracy in predicting binding proteins. Application
to the human proteome validates its ability to reduce cross-
predictions and identifies novel DNA/RNA-binding proteins

Metric Interpretability

TP Indicates the number of residues that are correctly classi-
fied as DNA-binding sites

FP Indicates the number of residues that are incorrectly clas-
sified as DNA-binding sites

TN Indicates the number of residues that correctly classified
as non-binding sites

FN Indicates the number of residues that were incorrectly
classified as non-binding sites

Specificity Indicates the portion of correctly predicted non-binding
sites

Precision Indicates the accuracy of residues predicted as DNA-
binding sites

Recall Indicates the portion of DNA-binding residues that were
successfully discovered by the model

F1-score Indicates the harmonic mean of precision and recall

MCC Indicates the prediction ability of both positive and nega-
tive classes

ROC-AUC Indicates the overall performance of the model

Table 2: Interpretability of different evaluation metrics in
terms of binding site prediction

with similar characteristics to known ones. This method
showcases efficiency and accuracy in sequence-based bind-
ing prediction for nucleic acids.

DNAPred (Zhu et al. 2019) The method presented in the
paper introduces a novel two-stage imbalanced learning al-
gorithm called Ensembled Hyperplane-Distance-Based Sup-
port Vector Machines for the prediction of protein-DNA
binding sites. The data imbalance problem, where the num-
ber of negative-class samples (nonbinding residues) sig-
nificantly outweighs the positive-class samples (binding
residues), often limits the performance of machine learn-
ing predictors. This paper addresses this issue by first us-
ing a hyperplane-distance-based under-sampling (HD-US)
algorithm to generate multiple training subsets and training
individual Support Vector Machines (SVMs) on them. In
the second stage, an enhanced AdaBoost (EAdaBoost) al-
gorithm is employed to ensemble the trained SVMs. The ap-
proach outperforms several other imbalanced learning algo-
rithms and achieves a significant improvement in identifying
protein-DNA binding sites.

SVMnuc (Su et al. 2019) The paper presents a new
method called SVMnuc, which is an ab-initio method de-
vised to predict nucleic acids-binding residues, addressing
the challenge of accurately identifying these biologically
significant sites. Leveraging the fact that binding residues
are evolutionarily conserved, SVMnuc employs three dis-
tinct sequence profiles to extract a comprehensive set of
features that capture residue characteristics. These pro-
files encompass information from PSI-BLAST, generating a
position-specific scoring matrix (PSSM) through sequence-
profile alignment; PSIPRED, offering probabilities for sec-
ondary structure states; and HHblits, producing a hidden
Markov model (HMM) profile based on database searches.
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Each of these profiles is processed to ensure its applicabil-
ity, such as transforming PSSM values to a logistic scale
between 0 and 1. The essence of binding residues’ mutual
influence within a binding pocket is embraced through the
application of a sliding window approach, accounting for
neighboring residues.

NCBRPred (Zhang, Chen, and Liu 2021) Authors
in (Zhang, Chen, and Liu 2021) propose a method, called
NCBRPred, which is designed to predict nucleic acid bind-
ing residues within proteins. NCBRPred adopts a multilabel
sequence labeling model (MSLM). By employing bidirec-
tional Gated Recurrent Units (BiGRUs), NCBRPred effec-
tively captures intricate interactions among residues. This
approach treats the prediction of both DNA-binding and
RNA-binding residues as a unified multilabel learning task,
integrating data from both DNA- and RNA-binding proteins
during training to alleviate cross-prediction problems.

DBPred (Patiyal, Dhall, and Raghava 2022) Authors
in (Patiyal, Dhall, and Raghava 2022) proposed a server-
based tool, called DBPred, for predicting DNA-binding
residues in proteins. A range of traditional machine learn-
ing and deep learning (1D-CNN) techniques-based models
are developed within the tool, incorporating binary, physic-
ochemical properties, and Position-Specific Scoring Matrix
(PSSM)/evolutionary profiles. The study’s rigorous method-
ology, encompassing thorough training and unbiased evalu-
ation, contributes a powerful tool for uncovering the intri-
cacies of DNA-protein interactions, amplifying the potential
to unravel genetic regulatory mechanisms.

CLAPE (Liu and Tian 2023) The CLAPE (Contrastive
Learning And Pre-trained Encoder) approach, introduced
in (Liu and Tian 2023), offers a novel solution for predict-
ing DNA binding residues in proteins. This approach ef-
fectively combines the power of a pre-trained protein lan-
guage model (i.e. ProBert) with contrastive learning tech-
niques (i.e. 1DCNN model). CLAPE leverages a dataset of
protein-DNA binding sites for training and computes classi-
fication results using the CNN model.

5 Results And Discussion
The classification results for the proposed method and its
comparison with the baselines are shown in Table 3 for
Dataset 1. Compared to the baselines such as DRNAPred,
DNAPred, SVMnuc, NCBRPred, DBPred, and ProtBert +
1DCNN, we can observe that ProtBert + ML classifiers (our
pre-trained model) i.e. Naive Bayes, Multi-layer Perceptron,
K-Nearest Neighbors, Random Forest, Logistic Regression,
and Decision Tree, show near-perfect specificity and preci-
sion scores. This eventually means that the number of cor-
rectly predicted non-binding sites is higher. Moreover, the
accuracy of the residues predicted as DNA-binding sites is
also higher. However, for Recall and ROC-AUC, the base-
line NCBRPred shows higher performance, while ProtBert
+ 1DCNN shows superior performance in the case of F1 and
MCC scores. More complex models like ProtBert + 1DCNN
may have a higher capacity to capture intricate patterns in
the data, which could lead to better F1 and MCC scores.

For our SeqVec + ML classifiers and Sparse coding +
ML/DL classifiers, we can again observe a near-perfect
specificity score. One interesting insight to note here is that
since the Sparse coding-based embedding method is com-
pletely unsupervised and does not involve any expensive
model training, it is still able to achieve a higher specificity
score. This is due to the fact that it preserves the neighbor-
hood context efficiently within the generated embeddings.
The reason for the simpler models to excel in specific met-
rics, such as ProtBert + ML classifiers achieving high speci-
ficity and precision due to their focused decision boundaries.

The classification results for the proposed method and
its comparison with the baselines are shown in Table 4 for
Dataset 2. We can observe that for the specificity, precision,
and MCC, both pre-trained models (i.e. ProBert and SeqVec)
and the Sparse coding-based method show higher scores us-
ing simple ML classifiers rather than using comparatively
more complex 1DCNN model. For F1 and ROC-AUC, we
can observe that DNAPred performs the best.

5.1 Statistical Significance
Since we report results for 5 experimental runs (as discussed
in Section 4.2), we analyzed the standard deviation values
for the 5 runs and computed P -values using the student t-
test. We observed that the P -values were < 0.05 due to
lower standard deviation values. This validation confirmed
the statistical significance of the results.

6 Conclusion
In this study, we have addressed the challenging prob-
lem of predicting protein-DNA binding sites using an in-
novative and comprehensive approach. Protein-DNA inter-
actions play a crucial role in various biological processes,
and accurate prediction of binding sites has broad implica-
tions in molecular biology, genetics, drug discovery, and be-
yond. Our work capitalizes on the synergy between conven-
tional bioinformatics techniques, state-of-the-art protein lan-
guage models, and advanced machine learning classifiers.
Through meticulous experimentation and rigorous evalua-
tion, we have demonstrated the superiority of our proposed
approach over existing models. Our model, trained on a
dataset of protein-DNA binding sites, exhibits robust pre-
dictive behavior as evidenced by higher predictive values on
benchmark datasets. The flexibility and generalization ca-
pacity of our models is highlighted by their adaptability as
a universal framework for binding site prediction across di-
verse protein-ligand binding scenarios. Our approach intro-
duces several contributions to enhance the accuracy and ef-
ficiency of protein-DNA binding site prediction. By leverag-
ing SeqVec, a powerful pre-trained model, we capture intri-
cate sequence features effectively. Additionally, we propose
a lightweight model based on Sparse Coding, which com-
bines k-mers and one-hot encoding to generate efficient ini-
tial embeddings. This approach’s parameter efficiency posi-
tions it as a promising candidate for rapid binding site pre-
diction. As we continue to refine and expand our approach,
we envision its potential to drive breakthroughs across vari-
ous domains of biology and genetics. Exploring the integra-
tion of epigenetic information and investigating ensemble
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Method Model Spec. Prec. Recall F1 (Bina.) ROC-AUC MCC

DRNAPred 0.692 0.185 0.677 0.291 0.755 0.226

DNAPred 0.655 0.157 0.671 0.254 0.730 0.194

SVMnuc 0.666 0.154 0.668 0.250 0.715 0.192

NCBRPred 0.674 0.165 0.677 0.265 0.713 0.207

DBPred 0.784 0.243 0.708 0.362 0.794 0.320

ProBert

1DCNN 0.834 0.307 0.658 0.380 0.746 0.339
NB 0.775 0.167 0.464 0.246 0.619 0.093
MLP 0.971 0.466 0.254 0.329 0.613 0.294
KNN 0.981 0.500 0.191 0.277 0.586 0.271
RF 0.999 0.999 0.002 0.004 0.501 0.043
LR 0.994 0.672 0.117 0.199 0.555 0.265
DT 0.942 0.211 0.159 0.182 0.550 0.096

SeqVec

1DCNN 0.972 0.418 0.280 0.293 0.626 0.276

NB 0.807 0.178 0.431 0.252 0.619 0.103
MLP 0.963 0.379 0.231 0.287 0.597 0.228
KNN 0.991 0.692 0.191 0.300 0.591 0.356
RF 0.999 0.851 0.023 0.046 0.511 0.135
LR 0.997 0.715 0.075 0.136 0.536 0.219
DT 0.933 0.197 0.167 0.181 0.551 0.088

Sparse
Coding
(kmers+OHE)

1DCNN 0.999 0.000 0.000 0.000 0.500 0.000

NB 0.938 0.096 0.067 0.079 0.503 0.007
MLP 0.999 0.000 0.000 0.000 0.500 0.000
KNN 0.997 0.115 0.003 0.006 0.500 0.009
RF 0.997 0.289 0.011 0.021 0.504 0.041
LR 0.999 0.000 0.000 0.000 0.500 0.000
DT 0.944 0.102 0.065 0.079 0.507 0.011

Table 3: Binding site prediction (classification) results for different evaluation metrics using the proposed and baseline methods
for Dataset 1. The best values are shown in bold. Dashes “-” in the model column mean they were end-to-end models and used
as described in respective original studies.

Method Model Spec. Prec. Recall F1 (Bina.) ROC-AUC MCC

DRNAPred 0.937 0.190 0.233 0.210 0.693 0.155

DNAPred 0.954 0.353 0.396 0.373 0.845 0.332

SVMnuc 0.966 0.371 0.316 0.341 0.812 0.304

NCBRPred 0.969 0.312 0.392 0.347 0.823 0.313

ProBert

1DCNN 0.830 0.242 0.619 0.317 0.725 0.221

NB 0.761 0.141 0.618 0.230 0.690 0.100
MLP 0.954 0.305 0.318 0.311 0.636 0.225
KNN 0.974 0.310 0.179 0.227 0.577 0.181
RF 0.999 0.545 0.002 0.005 0.501 0.035
LR 0.979 0.489 0.305 0.376 0.642 0.354
DT 0.910 0.123 0.198 0.157 0.554 0.059

SeqVec

1DCNN 0.960 0.328 0.287 0.283 0.623 0.292

NB 0.753 0.089 0.382 0.145 0.568 0.035
MLP 0.954 0.262 0.253 0.257 0.604 0.175
KNN 0.986 0.503 0.215 0.301 0.601 0.303
RF 0.999 0.782 0.051 0.096 0.525 0.194
LR 0.991 0.512 0.146 0.227 0.568 0.252
DT 0.882 0.107 0.222 0.144 0.552 0.046

Sparse
Coding
(kmers+OHE)

1DCNN 0.999 0.000 0.000 0.000 0.500 0.000

NB 0.986 0.058 0.012 0.021 0.499 0.000
MLP 0.999 0.103 0.001 0.002 0.500 0.005
KNN 0.993 0.066 0.007 0.012 0.500 0.002
RF 0.997 0.109 0.004 0.007 0.500 0.009
LR 0.999 0.000 0.000 0.000 0.500 0.000
DT 0.900 0.062 0.104 0.078 0.502 0.002

Table 4: Binding site prediction (classification) results for different evaluation metrics using the proposed and baseline methods
for Dataset 2. The best values are shown in bold. Dashes “-” in the model column mean they were end-to-end models and used
as described in respective original studies.
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methods to combine predictions from diverse models could
enhance the performance of binding site prediction, thus ad-
vancing our understanding of intricate cellular processes.
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Appendix
A Social Impact

DNA-binding proteins perform various functions in liv-
ing cells like replication, packaging, rearrangement, tran-
scription, gene regulation, recombination, and DNA repair.
Therefore the study of this type of interaction is essential
to understand the underlying processes. This understanding
can potentially drive novel applications in biotechnology,
agriculture, and drug design. For example, it can help im-
prove agricultural yields and quality, reduce the loss caused
by biotic and abiotic stresses, increase breeding efficiency,
etc. It may be possible to develop a web application us-
ing the proposed model, where users can input protein se-
quences, and the model predicts whether the protein is a
DNA-binding protein. This could be useful for researchers,
students, or anyone interested in molecular biology. AI-
driven classification of DNA-binding proteins has the po-
tential to revolutionize biological research, drive innovation
across industries, and empower individuals to engage with
and contribute to advancements in molecular biology, pub-
lic health monitoring, citizen science projects, and genetics.

B Sparse Coding Architecture
The overall workflow of the Sparse Coding embedding gen-
eration technique is illustrated in Figure 1. For a given pro-
tein sequence and k-mer length k, it works by computing the
k-mers of the sequence. Note that here we are using k = 3
to depict the workflow, but in our experiments, we have used
k = 9. In step (a), a sequence and k = 3 are given as inputs.
Then as long as the condition (n − k + 1) is satisfied, the
forward k-mers are extracted in step (b). Otherwise, the re-
verse k-mers are obtained in step (c). Here n represents the
length of the sequence. Once the k-mers are generated, they
are combined in a list in step (d). Then each k-mer is passed
on to the OHE method to get its respective binary vector in
(e). These OHE-based vectors are concatenated to design the
final numerical embedding of the corresponding sequence.

Figure 1: Workflow of Sparse Coding embedding generation
method for a given sequence.

C Dataset Statistics
As our datasets contain varying sizes of sequences, the de-
tails of the maximum, minimum, and average lengths of se-
quences present in the test and train sets in each dataset are
shown in Table 5. In each dataset, protein sequences are
present along with their respective binding site indication

as labels. For instance, a sample sequence from the train set
of Dataset1 is ”ARRIGHPYQNRTPPKRKK”, where the al-
phabets represent the amino acids of the respective protein
sequence and the labels are ”001111110011011100”. These
labels indicate if the corresponding amino acid has DNA
binding site capacity or not i.e. 1 is for the binding site &
0 for the non-binding site.

Length Statistics

Max Min Avg

Dataset 1 Train 1937 36 279.02

Test 743 62 236.43

Dataset 2 Train 3969 45 486.28

Test 968 55 290.81

Table 5: The details of maximum, minimum & average
lengths of sequences in the datasets 1 & 2 respectively.

D Classification Results
We utilized a deep language model, ProteinBert (Brandes
et al. 2022), to get the feature embeddings of the protein se-
quences from our datasets and employed those embeddings
to perform DNA binding site classification using our classifi-
cation models (given in Section 3.2). ProteinBert is designed
explicitly for protein sequences, and it consists of both local
and global representations. We obtain the global representa-
tion in our experiments.

The DNA-binding site classification results of Dataset 1 is
given in Table 6. The results illustrate that the NB classifier
depicts maximum performance in terms of recall, f1 score,
and ROC-AUC metrics, while MCC & precision is optimal
for the RF classifier and specificity for MLP. However, over-
all ProteinBert is not showing optimal performance as com-
pared to the other methods (mentioned in Table 3).

Moreover, the classification results obtained from Dataset
2 are reported in Table 7. We can observe that the NB model
is outperforming others in terms of recall, f1 score, and
ROC-AUC metrics. Precision and MCC have the highest
values against the DT model, while specificity is optimal for
the MLP classifier. However, yet again, the ProteinBert is
unable to achieve optimal performance as compared to the
other methods (mentioned in Table 4).

Method Model Spec. Prec. Recall F1 (Bina.) ROC-AUC MCC

Protein
Bert

1DCNN 0.998 0.000 0.044 0.000 0.521 0.060

NB 0.529 0.106 0.574 0.179 0.551 0.025
MLP 0.999 0.000 0.000 0.000 0.500 0.000
KNN 0.936 0.154 0.119 0.134 0.527 0.050
RF 0.972 0.215 0.078 0.115 0.525 0.074
LR 0.998 0.000 0.000 0.000 0.500 0.000
DT 0.967 0.181 0.073 0.104 0.520 0.055

Table 6: Binding site prediction (classification) results for
different evaluation metrics using the ProteinBert embed-
ding generation method for Dataset 1. The best values are
shown in bold.
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Method Model Spec. Prec. Recall F1 (Bina.) ROC-AUC MCC

Protein
Bert

1DCNN 0.998 0.000 0.002 0.000 0.510 0.000

NB 0.724 0.119 0.536 0.194 0.630 0.067
MLP 0.999 0.000 0.004 0.000 0.500 0.000
KNN 0.979 0.068 0.021 0.032 0.500 0.001
RF 0.996 0.230 0.016 0.029 0.506 0.044
LR 0.998 0.002 0.003 0.000 0.500 0.010
DT 0.991 0.241 0.040 0.068 0.515 0.071

Table 7: Binding site prediction (classification) results for
different evaluation metrics using the ProteinBert embed-
ding generation method for Dataset 2. The best values are
shown in bold.

E t-SNE Visualization
A popular visualization technique, named t-SNE (Van der
M. and Hinton 2008), is employed by us to visualize the
feature vectors generated by various embedding generation
methods for both datasets. We have selected the top 3 longest
sequences (S1, S2, S3) from our datasets respectively, to
compute the t-SNE plots. The details are discussed below.

E.1 t-SNE Dataset1
The t-SNEs against Dataset1 for the top 3 longest sequences
are depicted in Figure 2. We can observe that in all the plots,
the clusters are overlapping and non-definite. The binding
instances are less visible and scattered throughout the plots
in each figure, and a reason for it could be the data imbalance
issue in the dataset i.e. number of binding instances is much
less than the non-binding ones. Moreover, the Sparse Coding
technique yields very similar cluster structures for all three
sequences, while ProtBert and SeqVec show some variation
in the structures. Overall, the patterns illustrate that none of
the embedding methods for any sequence can generate very
clear clusters for both the binding and non-binding classes
in a 2-dimensional space.

E.2 t-SNE Dataset2
The t-SNE visualization of the top 3 longest sequences from
Dataset2 are shown in Figure 3. We can observe that for
any sequences against the ProtBert technique, the binding
class instances are almost invisible. This indicates that this
method can not preserve a good structure for less frequent
classes from the dataset in a 2-dimensional space. Further-
more, the SeqVec and Sparse Coding mechanisms illustrate
binding clusters being scattered across the plots for all the
sequences. Overall, yet again, no definite and clear cluster
structures can be viewed for Dataset2 too, and it can also be
due to the class imbalance challenge.
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(a) S1-ProtBert (b) S1-SeqVec (c) S1-Sparse Coding

(d) S2-ProtBert (e) S2-SeqVec (f) S2-Sparse Coding

(g) S3-ProtBert (h) S3-SeqVec (i) S3-Sparse Coding

Figure 2: t-SNE visualization of embeddings generated by different embedding generation methods (ProtBert, SeqVec, & Sparse
Coding ) using top 3 longest sequences (S1, S2, S3) from Dataset 1. The Figure is best seen in color.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2023. ; https://doi.org/10.1101/2023.08.23.554389doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.23.554389
http://creativecommons.org/licenses/by-nc/4.0/


(a) S1-ProtBert (b) S1-SeqVec (c) S1-Sparse Coding

(d) S2-ProtBert (e) S2-SeqVec (f) S2-Sparse Coding

(g) S3-ProtBert (h) S3-SeqVec (i) S3-Sparse Coding

Figure 3: t-SNE visualization of embeddings generated by different embedding generation methods (ProtBert, SeqVec, & Sparse
Coding ) using top 3 longest sequences (S1, S2, S3) from Dataset 2. The Figure is best seen in color.
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